Part Number Hot Search : 
CDP1822D D2105 608X5 MC33486A MAX2209 TFS1687 2SK1438 P2AF1
Product Description
Full Text Search
 

To Download IRF2204PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 210  i d @ t c = 100c continuous drain current, v gs @ 10v 150  a i dm pulsed drain current   850 p d @t c = 25c power dissipation 330 w linear derating factor 2.2 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  460 mj i ar avalanche current  see fig.12a, 12b, 15, 16 a e ar repetitive avalanche energy  mj t j operating junction and -55 to + 175  t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) mounting torque, 6-32 or m3 screw 10 lbf?in (1.1n?m) hexfet ? power mosfet this hexfet ? power mosfet utilizes the lastest processing techniques to achieve extremely low on- resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g absolute maximum ratings v dss = 40v r ds(on) = 3.6m ? i d = 210a  description  www.irf.com 1 advanced process technology ultra low on-resistance dynamic dv/dt rating 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free features typical applications industrial motor drive thermal resistance parameter typ. max. units r jc junction-to-case ??? 0.45 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient ??? 62 to-220ab IRF2204PBF 
IRF2204PBF 2 www.irf.com parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.041 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? 3.0 3.6 m ? v gs = 10v, i d = 130a  v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = 10v, i d = 250a g fs forward transconductance 120 ??? ??? s v ds = 10v, i d = 130a ??? ??? 20 a v ds = 40v, v gs = 0v ??? ??? 250 v ds = 32v, v gs = 0v, t j = 150c gate-to-source forward leakage ??? ??? 200 v gs = 20v gate-to-source reverse leakage ??? ??? -200 na v gs = -20v q g total gate charge ??? 130 200 i d = 130a q gs gate-to-source charge ??? 35 52 nc v ds = 32v q gd gate-to-drain ("miller") charge ??? 39 59 v gs = 10v  t d(on) turn-on delay time ??? 15 ??? v dd = 20v t r rise time ??? 140 ??? i d = 130a t d(off) turn-off delay time ??? 62 ??? r g = 2.5 ? t f fall time ??? 110 ??? v gs = 10v  between lead, ??? ??? 6mm (0.25in.) from package and center of die contact c iss input capacitance ??? 5890 ??? v gs = 0v c oss output capacitance ??? 1570 ??? pf v ds = 25v c rss reverse transfer capacitance ??? 130 ??? ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 8000 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 1370 ??? v gs = 0v, v ds = 32v, ? = 1.0mhz c oss eff. effective output capacitance  ??? 2380 ??? v gs = 0v, v ds = 0v to 32v nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance ??? ??? s d g i gss ns

i dss drain-to-source leakage current s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 130a, v gs = 0v  t rr reverse recovery time ??? 68 100 ns t j = 25c, i f = 130a q rr reverse recoverycharge ??? 120 180 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 210  850
IRF2204PBF www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 210a 1 10 100 1000 10000 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 1000 10000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 10.00 100.00 1000.00 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 20s pulse width
IRF2204PBF 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 30 60 90 120 150 0 2 4 6 8 10 12 q , total gate charge (nc) v , gate-to-source voltage (v) g gs i = d 130a v = 20v ds v = 32v ds 0.1 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 2.5 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 175 c j t = 25 c j 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 1 10 100 v ds , drain-tosource voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec
IRF2204PBF www.irf.com 5 fig 9. maximum drain current vs. case temperature v ds 90% 10% v gs t d(on) t r t d(off) t f  
 1     0.1 %      


 + -  25 50 75 100 125 150 175 0 50 100 150 200 250 t , case temperature ( c) i , drain current (a) c d limited by package fig 10a. switching time test circuit fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)
IRF2204PBF 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -
 fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 150 175 0 150 300 450 600 750 900 starting tj, junction temperature ( c) e , single pulse avalanche energy (mj) as i d top bottom 52a 91a 130a fig 14. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a
IRF2204PBF www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 210a
IRF2204PBF 8 www.irf.com  
       p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - -       ?   ?    !! ? 


"#$  ##% $# #$ ? %&'    ? ()   ? %&% * +   $,-  $) #,

,)".       /
 ,%+#% 0 ##$   for n-channel  hexfet ? power mosfets
IRF2204PBF www.irf.com 9   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   starting t j = 25c, l = 0.06mh r g = 25 ? , i as = 130a. (see figure 12).  i sd 130a, di/dt 170a/s, v dd v (br)dss , t j 175c.  pulse width 400s; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .   calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a.   limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2010 to-220ab package is not recommended for surface mount application.     !" # 
   
  international part numbe r rectifier lot code assembly logo year 0 = 2000 dat e code week 19 line c lot code 1789 example: this is an irf1010 note: "p" in assembly line position i ndi cates "l ead - f ree" in the ass embly line "c" as s embled on ww 19, 2000 notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRF2204PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X